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or, as for example in protein structure work, of the 
resolution 2/(2 sin 0)max, whenever experimental elec- 
tron density maps are published. 

I wish to thank Professor P. Coppens for his interest 
and helpful suggestions. 
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X-ray Diffraction from a 6H Structure Containing Intrinsic Faults 
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The theory of X-ray diffraction from a one-dimensionally disordered 6H structure (ABCACB) con- 
taining a random distribution of 14 unique intrinsic fault configurations has been developed. An exact 
expression for the diffracted intensity has been derived in terms of the coefficients of the characteristic 
equation and the boundary conditions by applying Holloway's method of analytic solution. This ex- 
pression is then used to obtain the diffracted intensity in reciprocal space as a function of the 14 fault 
probabilities, assuming these to be small. Observable diffraction effects like peak broadening, peak 
shift and the change in the peak intensity are discussed for different single-crystal reflexions. A unique 
evaluation of all 14 fault probabilities is not possible from an experimental measurement of diffraction 
effects. However, it is often possible to neglect certain fault probabilities on the basis of physical con- 
siderations such as the stacking-fault energy and the mechanism of formation of faults in the 6H 
structure. 

Introduction 

Recently we have shown (Pandey & Krishna, 1975a, 
b, c, d) that all the observed polytype structures in lead 
iodide, cadmium iodide and silicon carbide can result 
from spiral growth round a single screw dislocation 
created in a basic structure containing random stack- 
ing faults. The basic structures, which are the more 
commonly found small-period modifications, are dif- 
ferent in different materials (Verma & Krishna, 1966). 
Thus the basic structure in PbI2 is type 2H(ATB); those 
in CdI2 are 2H(Ag, B) and 4H(A~,BCo~B) while those in 
SiC are 6H(A~BflCTAo~C?Bfl), 
15R(Ao~BflC),BflAo~BflC~,Ao~CTBflC?Ao~BflAo~CT) and 
4H(A~BflQ, Bfl). The range of interaction, as defined 
by Jagodzinski (1949a), extends to two, three, four and 
six layers for the 2H, 4H, 6H and 15R structures re- 
spectively. Stacking-fault energy in all these materials 
is very low (Stevens, 1972; Prasad & Srivastava, 1970) 
and the basic structures frequently contain a random 
distribution of stacking faults. This produces diffuse 
streaks connecting X-ray diffraction maxima that orig- 

inate from reciprocal-lattice rows parallel to c*. The 
concentration of stacking faults varies considerably 
from one crystal to another but the average value of 
the fault-order degree, as measured experimentally, is 
reported to be 0.12 for SiC and 0.26 for CdI2 (Jagod- 
zinski, 1954; Jain & Trigunayat, 1970). The theory of 
X-ray diffraction from randomly faulted close-packed 
structures with a range of interaction up to three 
layers has been developed by several workers (Wilson, 
1942; Hendricks & Teller, 1942; Jagodzinski, 1949a, b; 
Paterson, 1952; Gevers, 1954; Kakinoki & Komura,  
1952; Kaklnokl, 1967; Johnson, 1963; Holloway, 
1969; Prasad & Lele, 1971). 

Gevers (1954) has developed the theory of X-ray 
diffraction from close-packed structures with a four- 
layer range of interaction. Lele (1974a, b, c) has ex- 
tended the theory to a stage where the fault probabilities 
are directly related to the experimentally observable 
diffraction effects for the structures 6H, 9R and 12R. 
We have shown in an earlier publication that there are 
18 possible intrinsic fault configurations that can occur 
in the 6H structure (Pandey & Krishna, 1975c, d). Of 
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these G 6H, G76H, G60 n and G6~ are enantiomorphous with 6H 6H 6H G14 , G~ H, G13 and Gx8 leaving only 14 unique intrinsic 
fault configurations (for notations see Pandey & 
Krishna, 1975c, d). Gevers (1954) and Lele (1974) have 
considered only the fault configurations G 6n, G 6n, 
G64 n, G 6n and G6g to occur in the 6H structure. This 
assumption is not justified since the other fault con- 
figurations can also occur depending on the manner 
in which the disordered 6H structure is obtained. For 
example, the fault configurations that are likely to 
occur in a _6H SiC crystal obtained directly from a 
growth run would be very different from those that 
occur in a disordered 6H structure obtained by heat- 
ing the silicon carbide 2H or 3C modifications until 
they undergo solid-state transformation to the 6H 
phase (Krishna & Marshall, 1971a, b). 

In the present investigation we therefore consider 
X-ray diffraction from a 6H crystal containing all the 
14 fault configurations and predict the effects that 
would be observable on single-crystal X-ray diffraction 
photographs. To do this the characteristic equation 
has been obtained by the method developed by Prasad 
& Lele (1971) but the final intensity expression is de- 
duced by Holloway's (1969) method of analytic solu- 
tion which expresses the diffracted intensity in terms 
of the coefficients of the characteristic equation and 
the boundary conditions. This obviates the necessity 
of explicitly solving the characteristic equation and 
considerably simplifies the calculations. Moreover one 
obtains an exact expression for the diffracted intensity 
which can be used to compute numerically observable 
diffraction effects even in the case of strongly dis- 
ordered crystals (with large a values). Diffraction effects 
expected from disordered single crystals with small 
values of a have been predicted and the equations can 
be used for experimental determination of the concen- 
tration of different types of faults present in disordered 
6H structures obtained by different methods. 

General expression for the diffracted intensity 

Following the notations used by Warren (1959), the 
diffracted intensity from a faulted close-packed 6H 
structure can be written as 

I(ha)= ~ g2(exp [i~0m]) exp m2 ih3 , (1) 

where ~0m is the phase difference across a pair of ruth 
neighbour layers and is given by 

2re (Ho-  Ko)qr,, (2) 
~Om= - -  U - 

qm being the displacement of the mth layer with re- 
spect to the original layer in units of ~(IOTO) in a plane 
parallel to the layers. It is known (Prasad & Lele, 1971) 
that 

@xp [i~o~])= ~ CjQy, j=l 

where 0i are the roots of the so-called characteristic 
equation, which in general has the form 

a,,o" + a._ 10"- 1 + . . .  + a0 = 0 .  (3) 

From equations (3) and (1), we obtain the diffracted 
intensity as 

/(ha) = 

J=l exp 

G 0 j  
C j01 I " 

exp[ ] o, 

In summing the geometric series we have assumed that 
none of the roots of equation (3) have unit modulus. 
Following Holloway (1969), equation (4) can now be 
written as: 

I½ n-1 . / - 1  ] iz~h3 ] 
= = t n - J ) ~ j - - a o  /(ha)= + 1- - '~va" -kJ ( J - - k ) exp - "  

Q~ 

. ,  exp 
1=0 t ~ J  

+ (complex conjugate), (5) 

where 

and 

C j =  (exp [ icp0])=J(0)= 1 ; j=l 
an=l . 

For a 6H crystal with intrinsic faults, the characteristic 
equation is of sixth degree so that the diffracted inten- 
sity can be written as: 

6 [rnzch3] 
2 ~ Nm cos 

m=0 l---3-1 
I(h3) = 1 + 6 , (6) 

m=0 
where 

Do-- (1 + a~ + al + al + a~ + al + ao 2); 
D~ = 2(a5 + asa4 + a4a3 + a3a2 + a2a~ + a~ao) ; 
Dz = 2(a4 + asa3 + a4a2 + a3al + azao) ; 

- ~93 = 2(a3 +asa2 +a,a~ + a3ao); 
D4 = 2(a2 + asa~ + a4a0); 
D5 = 2(al + asa0); 
D6 =2ao, 

and 

No 

Nx 

=af t ( l )  + a4[J (2) + aft(l)] + a3[J (3) + as J(2) 
+ a4J(1)] + a2[J(4) + as J(3) + a4J(2) + a3J(1)] 
+ al[J(5) + ass (4) + a4J(3) + a3J(2) + a2J(1)]-  a0 2 . 

=(1 +a,)J(1)+(as+a3) [J(Z)+asJ(1)] 
+ (a4+a2) [J(3)+aJ(2)+aJ(1)] 
+ (a3 +al )  [J(4)+asS(3)+a4J(2)+a3J(1)] 
+(a2 +a0) [J(5)+aJ(4)+a,,J(3)+aJ(2) + a2J(1)] 
-a~a0. 

- izch3 
3 ] - V I  

+ 

(4) 
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• N2=a3J(1)+(1 +a2) [J(2)+aJ(1)] 
+ (as+a~) [J(3)+aJ(2)+a4J(1)] 

(a4 + a0) [J(4)+asJ(3)+a4J(2)+aaJ(1)] 
aa[J(5) + as J(4) + a j ( 3 )  + a~J(2) + a~J(1)] 

a2ao. 

+ 
+ 

N~= 
+ 

+ 

a2Jx +at[J(2)+aJ(1)] 
(1 +ao) [J(3)+aJ(2)+a4J(1)] 
as[J(4) +,as J(3) + a4J(2) + aaJ(1)] 
a4[J(5) + a J ( 4 )  + a4J(3) + aaJ(2) + a2J(1)] 

- aaao • 

N4 = as[d ( 5) + a J  (4) + aaJ ( 3 ) + aaJ ( 2) + aaJ (1)] 
+ at J(1) + ao[J(2) + aJ (1) ]  
+ [J(4) + a J ( 3 )  + a4J(2) + a3J(1)]-a4ao.  

Ns=aoJ1 +[J(5)+asJ(4)+a4S(3)+a3J(2)+azJ(1)] . 

N6 - a o  • 

Thus we need to evaluate the coefficients a s of the 
characteristic equation and the boundary conditions 
J(j)  to obtain the final expression for the diffracted 
intensity. 

Character is t ic  equat ion for faul ted 6 H  

To get the characteristic equation we shall follow the 
method developed by Prasad & Lele (1971). Six kinds 
of layers need to be distinguished in the perfect 6H 
(hkkhkk) structure of  which three layers have a stack- 
ing offset + S with respect to the preceding layer and 
the remaining three an  offset - S .  Let us choose the 
origin on an h-type layer which is followed by two k 
layers such that the layer next to the origin has a stack- 
ing offset +S .  Let the layer through the origin be 
denoted by a subscript 0 and succeeding layers in the 
unit cell by subscripts 1, 2, 3, 4 and 5. Then the per- 
fect 6H structure can be written as 

J(m,j) so obtained may be solved by writing J(m, j )= 
C j0", where C s and 0 are the functions of a. After 
eliminating the constants C s, we finally obtain the fol- 
lowing characteristic equation: 

06 + (~s + 2~1s)0 s 
-~ (a  2 2a6-- 2a17 + a 2 -  2 2 2 2 4 - c q -  as - a l l  + 3cqs)0 
+ [2as(1 - c q ) -  2a~2 + 2~s]0 3 
+ [__ ~2 31_ (X2 ..[_ a4 (1 - a4) + ct~ - 2a8( 1 - as) 

avl + a,s]~.o 
+ [a,(1 - a ~ ) -  2a~o(2- a,o) (1 - a,o)210 
- [(1 - (xl) 2 21- (1 - a2) 2 -~- (1 - aa) 2 + (1 - a4) 2 

- 2~s2(1 - as) 2 + ( 1 - a6) 2 + 3a72(1 - a7) 2 + (1 - as) 2 

+ ( 1 - a l l )  2 + (1 -cq2)  2 +(1 -a~6) 2 +(1 -cqT) z 

--  a~2--  a16(1 - - a l e  ) + ct]-  (1-0~5) 4 -  2a~(1 -~7)  
- 2a7(1 -a7 )  3 + a7 a + (1 - - a 7 )  4 ~- (1 - a,0)' 
+ ( 1 -  t~15) 4 - 1 3 ] = 0 .  (7) 

Evaluat ion  o f  boundary condit ions 

Boundary conditions will be evaluated in two steps by 
the method given by Prasad & Lele (1971). First one 
obtains the probability, w s, of finding a layer with a 
particular value o f j  on passing through an arbitrary 
region of the crystal. Then considering all possible 
sequences starting with A0, B~, (72, As, C4 and Bs, one 
obtains 

5 
J ( m ) =  (exp [i~0m]) = ~. ws(ex p [iq~,~']), (8) 

S=0 

where x s denotes the layer type at the origin. From 
Fig. 1, one can obtain the following values for the w's: 

w0 = w3 = ~[1 - ½(2~ i - ~2 - 2aa + c q -  a 6 + ~ 8  - -  2al0 

- 2all + 2a~s + 2ai7)] (9) 

wl = w4 = ~[1 + ½(al - 2az - aa + 2a4 + ~ 6  - -  a 8  - -  (Xl0 

-axx + cqs + cq7)] (10) 

h k k h k k 
:40 Bi Cz A3 Ca Bs 

+S + S  +S  - S  - S  

h k k h k k 
Ao B, C2 As (74 Bs 

- S  + S  + S  + S  - S  - S  

The function J(m,j) = (exp [itpm]s), as defined by Prasad 
& Lele (1971), may be written as 

J(m,j)= ~, P(m,j) exp [bPm]s, 
J 

where P(m,j) is the probability of finding an mth layer 
with the subscript j  mod 6 and [~Pm]S is the phase differ- 
erice of the mth layer with subscript j mod 6. J(m,j) 
can now be related to at, the probability of occurrence 
of a fault of type G 6u, with the help of Fig. 1 which 
considers the transition probabilities for going from 
the ( m - 1 ) t h  layer to the mth layer. The subscripts 
can be found from the relative positions of different 
layers. The set of six coupled difference equations for 

w2 = ws ='~[1 + 1(al + a2 - aa - a4 -- 2a6 + 2aa - alp 
--  a l l  -~- a15 21- a17)] . (11)  

These values were used for evaluating the boundary 
conditions, J(0), J(1), J(2), J(3), J(4) and J(5) given 
below: 

j(0)=l (12) 
J (1)=  - ½  (13) 

J(2) = ~;[ax - 2a2 - a 3 -~- 2a4 + 6as + 4a6 + 2a8 +§cq0 
- 4all - 3a12 + 10als + 6a16 + 4~a7] (14) 

J(3) = ~ [ -  2cq + 4az + 2a3 - ~4-  6as - 2a6-  4as + 2alo 

+ 8cqt + 6Cqz - 8cqs - 3cq6- 5ax7] (15) 
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J(4) = {[4~x - 2c~ 2 - ~3 - 4~4 -- 2~6 + 6~X7 + 8~XS -- 10Cqo 
- 4 ~  - 3~x2 + 4~x5 + 40q7] (16) 

J(5) =-~[ -  3 + 6~2 + 6~3 + 9~4 + 12~5 + 60~6 + 12~7 
+ 30~ao + 6~u + 6cq2 + 60q5 + 6~x6 + 3~7] • (17) 

Substituting the values of  aj from equation (7) and 
J ( j )  from equations (12) to (17) in equation (6), one 
finally obtains the expression for diffracted intensity. 

D e d u c t i o n  o f  di f fract ion effects  

The intensity maxima occur near the positions for 
which L ( =  h3)= 1, 2, 3, 4 and 5. Setting ~h3/3 = (n/3 + 
rcAh3/3), (2r~/3 + nAh3/3) and (~z + zcAhz/3) corresponding 
to the peak positions of reflexions with L =  6 M  + 1, 
6 M  + 2 and 6 M  + 3 respectively in the intensity expres- 
sion given by equation (7) and assuming ~i and Ah3 <~ 1, 
one can find the expressions for the maximum intensity, 
Ima, and the peak shift, Ah3, by differentiating the 
equation (7) with respect to h3 and equating to zero. 
With the values of Imam, the half width, ]w[, of  the dif- 
fraction profile can be easily calculated. The results 
are given below: 

Imax -- 2 ~'2/(5~Xl + 3~2 + 5~X3 + 3~4 + 4~5 + 6~ 6 + 12~ 7 + 6C~S 
+ 4~Xlo + 3~xxt + 8~Xt2 + 10~x15 + 6~xx6 + 60q7 ) (18) 

for L = 6 M +  1 

Ao 

B1 

C~ 

l--gt Bt 

131o co 0~7 CI 

C2 
Ul l  C3 

~2  C4 
U2 --- Cs 

1 --gx 
Ull 

~12 

A3 u2 
u3 
u7 

i ~to 

C, 
Bo 
BI 
Bz 
B~ 
B, 

Bs 

l - -g2  C2 1-g_____L B5 
~6 Ao Oqo Ao 
Uxs A~ cq At 
UI6 A2 C4 US A2 
0q.o A3 u6 A3 

I ~4 A4 ~1~____ A4 

us As ux6 As 

1--g3 A3 1--g______L Ao 
~7 

Bo Co 
0~17 Bt Ul Cl 

OqS B2 B s - -  us (72 
~7 B~ ~s C~ 
Ut 94 ~17 C4 

us - Bs ~ C~ 

gt = (~2 + u3 + ~7 + Ulo + ~11 + ut2) 
g2 = (u4 + us + ~6 + U~o + cqs + u~6) 
g3 ~--" (UI + U5 "~- U7 "~ U8 ~1_ Ul s .31_ U16) 

Fig. 1. Probability trees for successive layers. 

/max "~ 2~2/(0~1 + ~2 + ~3 + ~4 + 4Cq + 2~ 6 + 4~ 7 -Jr- 2~8 
+ 4Cqo + ~11 + 2Cq5 + 2~x6 + 2~17) (19) 

for L = 6M + 2, and 

/max ----- 4g/z/(al + 3~2 + Cq + 3~ 4 + 2~S + 6~7 -[- 8~10 + 3all 
+ 4Cq2 + 2~15 + 3~16) (20) 

for L =  6 M +  3. 

Ah3 --- + (1/3/4zc) ( -  cq + ~2 + cq - ~ 4 -  2~6 + 2~8 + 4~1o 

- ~lx + 2~x5 - 2~17) , (21) 
for L = 6 M - ~  1, 

Ah3 ~- + (1/3/4n) ( -  ~ - ~2 + cq + 0C 4 AV 2~ 6 --  2~8 + 4~x0 
+ cqx + 2cq5 + 2~17) , (22) 

for L = 6M-T-2 

and 

Ah3=0 
for L = 6 M +  3; 

[¥x "~ ~(5~1 + 3cz2 + 5~3 + 30c4 at- 4~5 + 6~6 + 12~ 7 + 6~8 

+ 4Cqo + 3~n + 8cq2 + 10~x5 + 6~x6 + 6~17) , (23) 
for L = 6 M  + 1, 

W2 ~--- 1(~1 -[- ~2 27 ~3 31- ~4 + 4~5 + 2CZ6 + 4CZ7 + 2c~8 + 4~x0 

+ ~xl + 2~15 + 2~16 + 2~x7) , (24) 
for L = 6 M  + 2, 

and 

W3 ~ 3x(cq + 3~2 + ~3 + 3~4 + 2~5 + 6~ 7 + 8~to + 3~xx 
+ 4e~2 + 2cqs + 3CZ16) , (25) 

for L = 6 M  + 3. 

The diffraction effects from a faulted 6H structure 
can be summarized as follows: 

(i) Reflexions with H - K = 3 N  are unaffected by 
faulting. 

(ii) All reflexions with H - K #  3N are broadened as 
a result of  faulting. 

(iii) There is change in the intensity of  the peak 
maxima.  

(iv) Reflexions with H -  K #  3N, L =  6M + 1 and 
L = 6 M  + 2 exhibit peak shifts also. 

These results are in agreement with those obtained 
by Lele (1974a) for the fault configurations G 6n, G 6n, 
G 6u, G 6H and G166H. 

D i s c u s s i o n  and results  

There are 14 unique intrinsic fault configurations in the 
6H structure and only seven experimentally observable 
compound  fault parameters  [see equations (18) to (25)]. 
One can find expressions for two more experimentally 
observable parameters  from peak asymmetry  measure- 
ments. The changes in the integrated intensity can be 
used as a measure of  faulting instead of  changes in the 
peak maxima.  But the peak asymmetry  and changes 
in integrated intensities are usually too small to be 
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estimated experimentally with sufficient accuracy. Thus 
peak shift and half width appear to be the best meas- 
ures of faulting. These provide us with only five com- 
pound fault parameters from which a unique evalua- 
tion of all the 14 unknowns is not possible. 

However, it is usually possible to neglect some of the 
c~'s which are expected to have very low values on the 
basis of physical considerations. For example, it is 
well known that in the e-SiC crystals grown at high 
temperatures, fault configurations containing h - h con- 
tacts are unstable and do not occur (Krishna & Mar- 
shall, 1971a, b). Consequently we can take t~4=e5 = 
e 6 = t~lO = e l5  = e l6  = (z17 = 0.  In the case of such as-grown 
crystals the relative magnitudes of the remaining seven 
c~'s will depend on the relative stacking-fault energies 
(SFE) of the corresponding fault configurations. These 
were evaluated by us in earlier papers (Pandey & 
Krishna, 1975c, d) where it was shown that the SFE 
of the fault configurations G 6n, G 6n, G 6n, G 6H and G 6H 
is much less than that of G6~ and 6H G:z. It is therefore 
to be expected that cq, e2, ca, e7 and ea will have much 
larger values than el~ and e:2 in as-grown 6H SiC crys- 
tals. If the latter are neglected, we are left with only 
five unknowns whose value can be experimentally deter- 
mined by using equations (18) to (25). 

The above arguments are not applicable to a dis- 
ordered 6H structure obtained from a 2H SiC crystal 
by solid-state transformation. Krishna & Marshall 
(1971a, b) have shown that the transformation occurs 
by a disordering process and the end product is in- 
variably a faulted 6H structure. Such a structure would 
also contain fault configurations involving h - h  con- 
tacts between the layers. The fault probabilities Ca, 
(XS, eta, e lo ,  ~15, 0~16 and CX17 must then be taken into 
account. 

It should be noted that equation (5) is subject to the 
usual assumptions about crystal size and the extent 
and spacing of the faulted close-packed planes, but 
otherwise its generality is restricted only by the condi- 
tion that none of the roots of the characteristic equa- 
tion has unit modulus (Holloway, 1969). Thus, in the 
special case when only one of the fault configurations 

6n G6H 6H Glz, or G17 is present, the above deduction will 
not be valid since 0 =  + 1 becomes a root of the char- 
acteristic equation. It was pointed by Jagodzinski 
(1954) that roots with unit modulus represent a long- 
range correlation between the positions of close-packed 
layers and add a sharply peaked component to certain 
X-ray reflexions. However, in the case of e-SiC, this 
will be a rare eventuality since the fault configurations 
G 6u and G67 n contain h - h  contact and the fault con- 
figuration G6f has a high SFE 3~2 (for notations see 
Pandey & Krishna, 1975c, d). None of the three fault 

configurations is therefore likely to occur by itself in 
~-6H SiC crystals. The characteristic equation and the 
expression for observable diffraction effects have been 
obtained for small values of ~ i~e. ~,~  1. This assump- 
tion is not valid in the case of heavily faulted 6H SiC 
structures such as those obtained from the 2H or 3C 
crystals by solid-state transformations. In such cases 
it is necessary to perform a more rigorous calculation 
including higher-order terms in e using the exact in- 
tensity expression given by equation (6), which is valid 
for all values of c~. 

This work was partially supported by a research 
grant from the National Science Foundation, Wash- 
ington DC. We are grateful to Dr Bhagawati Prasad 
for helpful discussions. 
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